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Abstract

New semi-classical models of virtual antiparticle pairs are used to compute the
pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field the-
ory (QFT) is found. When the results of the new models and QFT are combined, formu-
lae for e and a,(q) are derived in terms of only A and ¢. The modeling method applies
to both the electromagnetic and color forces. Evaluation of the action integral of poten-
tial field fluctuation for each interaction potential yields & %/2 for both electromagnetic
and color fluctuations, in agreement with QFT. Thus each model is a quantized semi-
classical representation for such virtual antiparticle pairs, to good approximation. This
work reduces the number of arbitrary parameters of the Standard Model by two from 18

to 16. These are remarkable, unexpected results from a basically classical method.

Keywords: virtual, antiparticle, positron, QED, QCD
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1. Introduction

It is well known that virtual pairs of elementary particles appear briefly as vac-
uum fluctuations and then annihilate each other [1]. Many effects of these Virtual An-
tiparticle Pairs (VAPs) are well understood — such phenomena as the screening of “bare”
electric charge by vacuum polarization of virtual fermions [2].

The quantum states of normal material particles obey the Heisenberg Uncer-
tainty Principle for energy (Ae At > hk/2) [3]. VAPs are ephemeral quantum states
which can only exist so long as Ae At < h/2. In general, the maximum lifetime of such

a VAP (of any elementary particle species) is the Heisenberg lifetime

by = h/2 (1)

=55
where m is the mass of one of the particles (cgs units are used in this paper).

The goal of this paper is to point out that, if one adheres carefully to the semi-
classical method, then it can be used to compute VAP lifetimes in good agreement with
the Heisenberg lifetimes. This shows not only that semi-classical modeling corresponds
unexpectedly well with QFT, but also offers the advantage that the coupling constants
appear explicitly in the new resulting formulae, so that we may solve for their values
(since we know ty from QFT, too).

As a tool for further physical insight into VAPs, or a conceptual or teaching
aid, it would seem natural to apply a semi-classical dynamical model to the VAP (anal-
ogous to the Bohr hydrogen atom), if it could be appropriately quantized. Semi-classical
quantization is a well understood method [4]. The Bohr semi-classical model success-
fully yields so many physical properties of hydrogen and has such undisputed peda-
gogical value that it is still widely used in quantum mechanics texts. In addition, the
semi-classical Bohr-Sommerfeld quantization method continues to produce new physical
insights into quantum-mechanical problems, such as Brau’s recent success at modeling
meson spectroscopy using a Bohr-Sommerfeld treatment of constituent quarks [5]. Com-

parison between the prediction of such a dynamical model for VAPs and the quantum
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lifetime (Eq. 1) might be instructive about the differences between semi-classical and
fully quantum mechanical physics of VAPs. This expectation is encouraged by Brau'’s
derivation of useful formulae for the dependence of some physical quantities on quantum
numbers, which emerge from the semi-classical method but have not been obtainable
from full quantum calculations. Curiously, there seems to be no trace in the literature of
such a dynamical model of VAPs.

The test of usefulness of such a semi-classical model for VAPs should be
whether the model successfully predicts the state’s lifetime in agreement with quantum
theory. Of course we are aware that semi-classical methods have limitations, and de-
pend upon classical dynamics, which is rigorously valid only for large quantum numbers;
here we deal with vacuum states, so the results deserve to be interpreted with due con-
sideration of how much reliability we are entitled to expect. One might argue that only
order-of-magnitude agreement could result at best.

In this paper it is shown that semi-classical relativistic two-body theory can
enable us to compute a good approximation of the Heisenberg VAP lifetimes ¢y for the
massive leptons, the quarks, and electroweak bosons. The agreement of the results with
QFT is very good, but more importantly, the semi-classical models explicitly depend
upon e and a, for their dynamical timescales. Therefore, the agreements of the dynami-
cal timescales with the Heisenberg lifetimes of the VAPs can be solved for good approxi-

mations of e and a, in terms of more fundamental physical constants.

2. Virtual Massive Lepton Antiparticle Pairs

Let us first consider a virtual electron-positron pair (VEPP) unperturbed
by any external forces, using classical electrodynamics. In second-order QED, pro-
cesses described by the Feynman diagram in Fig. 1(a) occur [6]. An electron with four-
momentum p, a photon with four-momentum k, and a positron of four-momentum
—p — k spontaneously appear from the vacuum at one spacetime point z; = (¢;, X;) and

propagate to another spacetime point r3, where they annihilate; energy and momentum
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are conserved.

We shall take the Feynman diagram in Fig. 1(a) as the basis for a classical dy-
namical model (the usual semi-classical approach), and then assure that an appropriate

quantization condition is met.

Of course it is not possible to model Fig. 1(a) perfectly in the classical frame-
work. In the diagram, the particles and the timelike virtual photon are free, with the
electromagnetic interaction only acting at the vertices at the top and bottom of the di-
agram. This is the usual perturbation-theory approach. In contrast, classical physics
assumes that the particles move in a potential continuously over time; QED perturba-
tion theory treats the interaction without reference to time dependence [8]. So we can-
not expect the classical dynamical model to correspond with every feature of the dia-
gram. Rather, the objectives here are to answer the following questions: (1) can such
a VEPP appear, consistent with the classical principles? (2) what happens to the par-
ticles thereafter to determine their dynamics? and (3) is the system subject to reason-
able quantization conditions as in the semi-classical method? The general viewpoint of
this approach is that QED has led the way in showing us the occurrence of processes
like Fig. 1(a) in nature; now that we know about these processes, we can investigate
what non-perturbative theory might tell us about them - in this case, semi-classical non-

perturbative theory.

Concerning question (1), antiparticle creation and annihilation have been rec-
onciled with classical relativistic dynamics for a long time. The role of antiparticles in
classical relativistic dynamics is sometimes misunderstood, because of the historical in-
terpretation of negative-energy states in relativistic quantum mechanics as antiparticles.
However, the natural appearance of antiparticles as particles in a state of motion such
that dr = —dt/v (where 7 is proper time and 7 is the Lorentz factor) was realized by
Stiickelberg [9]; Costella et al. [10] give a clear exposition of the positive rest mass en-

ergy of antiparticles in classical relativistic theory (see also Trump and Schieve [11]). So
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particle/antiparticle properties are well defined and consistent with the classical prin-
ciples. In addition, classical pair creation has been studied, for example by Carati [12]
in solutions of the well-known Abraham-Lorentz-Dirac equation. It should be clear that
antiparticle pair creation and annihilation are accepted as consistent with classical rela-
tivistic dynamics in the way that the following model is developed.

According to the Feynman diagram, the electron and positron are each created
at the origin of the center-of-mass (CM) coordinate system. At the exact instant of the
particles’ creation, both are at r = 0. In the CM frame the leptons then travel apart
along a radial line with some initial velocity vo (Fig. 1b), with a separation R(t) = 2r.
This motion is consistent with the usual theory, since the particles are off mass shell and
momentum is conserved. Because the electromagnetic potential is singular at B = 0,
it appears at first as if the pair would be inseparable, due to infinite attraction and
couldn’t escape from the origin unless vy = ¢ — év where v is infinitesimal. Let us
assume that each particle appears at some finite distance from the origin so that their
initial separation is R;nit, and for the moment let us ignore this obstacle. (We shall find
later that R;,;; may be taken to zero in the computations.)

Sometimes the appearance of a VAP is regarded as a violation of the conser-
vation of energy on a timescale too brief to observe. That is true of the particles’ rest
mass energy, but since the particles are off mass shell and energy is conserved, the to-
tal energy of the particle-field system must be zero in QED (it was zero for ¢t < ¢;). In
this semi-classical model also, we must consider energy conserved (including rest mass),
and assume that after the leptons’ emission from the origin, the sum of their rest mass
energy and kinetic energy is the negative of the electromagnetic binding energy at the

separation R = 2r of the particles, requiring the two-body system energy equation

€e=2vm. 2+ U(R)=0 (2)

where v = 1/4/1 — (v(r, t)/c)? is the Lorentz factor (as v — ¢, v — o0;as v — 0, v —

1), and U(R) is the potential energy function of the electron and positron’s mutual elec-
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tromagnetic attraction. Thus our model has zero net energy in the CM frame of refer-
ence [13], and thus it costs the vacuum no net energy to create these particles. In fact,

this is necessary for consistency with the semi-classical approach, which dictates conser-

vation of energy in the dynamical model.

The definition of energy baseline in Eq. (2) captures in a classical way the en-
ergy debt that would have to be paid in order for these leptons to be escalated into free
particles. As expressed by Greiner [14]: if a virtual pair is separated during the inter-
val t and if it has gained more energy than 2mc?, then the particles become real. The
quantum system evolves almost as if it were in a potential energy well of depth 2mc?,

and Eq. (2) is a classical analogue of that.

We shall ignore radiation reaction, since in QED these particles are not capa-
ble of emitting radiation (and if the particles radiated, then we would be modeling some
other, more complex process than Fig. 1(a)). We impose conservation of angular mo-
mentum, so that the spins of the particles are such that they sum to zero net angular
momentum (the virtual photon is only a carrier of energy, but not of momentum or net
angular momentum). Then the spin angular momentum of the electron must be antipar-

allel to that of the positron, and the magnetic moments g,- and g+ must be parallel.

What forces determine the dynamics of these particles? With zero orbital an-
gular momentum in the system, there are only the electrostatic and magnetic spin-spin
forces in play (gravity can be ignored). In the rest frame of each lepton, the electrostatic
potential is —e?/R and the magnetic spin-spin potential is the magnetic field gradient
potential energy Up [15], which gives the familiar field gradient force V(u-B) = V(-Up)
— which is conventionally not assumed in discussing the diagram in Fig. 1(a). But it
should be noted that this creates no conflict whatever between the present model and
QED, because diagrams like Fig. 1(a) do not contribute to any observable effect in QED

[2]; other diagrams in which VAPs interact with real particles lead to the observable ef-

fects.
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What are the relative magnitudes of the two electromagnetic forces? To an-
swer this, we need to estimate the maximum separation vector between the electron and
positron. Conventionally, an upper bound is calculated for the separation of the electron
and positron, which cannot move apart faster than c, the speed of light. Then an upper

bound on their separation [16] is cty,, With ty. given by (recall Eq. 1)

h/2
tHe = / ~32x10%2s.
2m.c?

Then cty, = h/(4mc) 2 107 cm.
Let us consider first the case in which the electron and positron separate along
the direction of p,-. The absence of torques ensures that the motion is purely one-

dimensional. At maximum separation, the potential energy of the spin-spin interaction

isUp = — wB = —2u?/R3, where

h
ge 5 ~ 2ectye , (3)

fe = 2m,c

and g is the Landé factor & 2 for fermions. Then the ratio of the potentials is

Us _ 20 R _ _ ofctre 2
V. R3e2 R/~

For R = cty,, the magnetic force is dominant.

Perhaps it should be noted for comparison that a VEPP is a very different
bound state of the electron and positron from positronium [17]; an electron and positron
in a positronium state are in a stationary state with spatial extent of order ag ~ 0.53 X
1078 cm (Bohr radius), whereas the leptons in a VEPP are not. The much smaller scale
of the VEPP and the 1/R® dependence of the spin-spin force are the reasons that the
spin-spin force dominates, although it is usually a small perturbation.

Let us assume that the leading term in the potential is the spin-spin force be-
tween the leptons, and solve for the dynamics using this term alone; we will then check

to verify whether this assumption is accurate.
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As the particles separate, the electromagnetic attraction between the leptons
will slow their motions until they reach a maximum separation R, where the velocity
and kinetic energy are zero. While the particles move, we must perform a Lorentz trans-
formation from the lepton rest frame to the CM frame, so U(R) = —2u2/(yR)* (Jack-
son [18] explains how this introduces a change from R to v R for this one-dimensional
motion). When the particles come to rest at the turning points, it is easy to solve the

energy equation (2) because v = 1, and obtain

2 \1/3 32\ 1/3 252\1/3 | |
Rmaz - ( Fe ) = (Te c) = (e ) ~ 4.70 x 10—12cm y (4)

mec? 1672 4c mec

where r, = e2/(m.c?) ~ 2.82 x 107*? cm is the “classical electron radius”, and Ac =
h/(m.c) = 2.43 x 107!° cm is the Compton electron wavelength.

We see that Rmaz & cty./2, which is quite consistent with the conventional
upper bound on the leptons’ separation derived from QED, and mentioned previously.

It should be noted that any structure in the pointlike electron or positron is
known to be smaller than 10715 c¢m, as determined from high-energy scattering [19], so
the scale of our model is more than three orders of magnitude larger than any of the
constituent particles’ structure, justifying our treating the leptons as points. (We now
explicitly assume Rinit € Rmaz.)

At the scale Ryaz, the strength of the electrostatic potential V,(R) = —e?/R
is small relative to Ug(R). Their ratio is Up/V. = 33 at R = Rpa. (and greater for
R < Rpmaz). The lepton motion is governed by the spin-spin force, and the electrostatic
potential is negligible in determining the dynamics.

After the leptons separate and reach their turning points, we then expect that
the electron and positron each retrace their motions in reverse and annihilate one an-
other when they collide at the origin. The motions of the particles can be computed by
integrating the energy equation (2), and we can compare the dynamical result (which
we shall call £,.) with the quantum mechanical maximum timescale for this process of

creation and annihilation in the presence of no external forces (the Heisenberg lifetime),
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tre. There is a considerable literature of attempts to solve rigorously the classical prob-
lem of colliding relativistic charged particles [20]; no results are found in the literature
for the problem considered here.

Let us also address one conceivable objection to the physical applicability of
this model. It is well known that a free electron cannot be localized in a wave packet
smaller than Azz ~ A./27, due to the Zitterbewegung [21] (oscillations in (z) with fre-
quency wz = 2mc?/h ~ 1.5 x 10*'sec™!). Although R, < Az, the period of Zii-
terbewegung oscillations is 4.2 x 1072! s > tp., so in QED the Zitterbewegung does not
have time to delocalize the VEPPs before they annihilate; we shall see below whether
the same is true in our dynamical model.

Let us calculate the dynamical timescale for the VEPP creation-annihilation

process, using the energy equation (2) as an equation of motion. We can rewrite the en-

3
74 — Rmaz
2r )

To simplify the derivation, let us define ( = R/R,,,,. Taking the square root of both

ergy equation as

sides of the energy equation, we obtain

R z _2
2 mazr _
= () o

Invert both sides and expand 7:

Solve for v:

an equation of motion which may be integrated.
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Let the total time for the formation, separation and re-annihilation of the vir-
tual ete™ pair be denoted t,., the dynamical lifetime. Then ¢,, is twice the time for the
particles to separate and reach the turning points, since the path is approximately time-
symmetric. (If we were to rigorously include field retardation effects, then the problem
would no longer be perfectly time-symmetric). For the purpose of this calculation, we

can let R;n;: — 0 without encountering a singularity. Then

Ronaz /2 1
tve _ 2 l/ dT‘ _ _ Rmaz / dC .
e I-(g)? i
The integral may be found in ref. [22]; substituting its value yields the dynamical VEPP

lifetime

maz (VTT(3 m AT
_E f(‘/; (3)) z¥(1.7247)= (e h ) L 970x 107 5. (5)

tve -
c 6T(%) 4c mec?

Let us compare this dynamical lifetime with the Heisenberg lifetime for such
an electron-positron pair, tge = h/(4m.c?) =~ 3.2 x 107%? s above. The dynamical
computation is only 16% lower. Since ty,e = tpe, there is clearly no difficulty for the
model posed by Zitterbewegung, in agreement with QED.

We were trying to obtain the mazimum lifetime of such a dynamical system,
and the reader may wonder whether ¢, is in fact a maximum. If the electron and posi-
tron separated along some trajectory different from the torque-free axis of their angular
momenta (which we used in the above calculation), what would the lifetime be? Let us
refer to Fig. 2. Let us suppose that the electron and positron initially separate along
a line with a direction at an angle 8 relative to the g vector. If § = 90°, then Ug =
— p-B > 0 and the energy equation (2) does not have solutions because the potential
is repulsive, not attractive. The semi-classical model suggests that VEPPs do not exist
with motions along these trajectories. The cones such that § x~ 54.7° define the sur-

face outside which Ug > 0, as shown in Fig. 2. Inside the cones, as 6 decreases u-B
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becomes positive (Up becomes negative) and it becomes possible to satisfy Eq. (2) iff
wB>2m..

The dynamics of the VEPP are more complex for 0 < # < 54.7° than in the
8 = 0 case, which we already treated. Let us consider an electron near the vertical axis,
as pictured in Fig. 2, such that 0 < § < 54.7°. There is now a torque on the magnetic
dipole moment of the electron, given by 7= uxB. Classically this causes the magnetic
moment to precess about B. But by symmetry (and conservation of angular momentum)
the positron experiences the same torque due to the electron’s magnetic field, and hence
both magnetic moments precess equally and remain always parallel. Because p and B
are no longer parallel, |¢-B] is reduced. If the trajectories of the electron and positron
are still close to the vertical axis, R in the particle frame still is approximately ¥R in the
CM frame, and we can use Ug = —p2(3cos?8 — 1)/(vR)? in Eq. (2) [23]. This leads
to smaller values of Rpaz and t,., and thus we see that the values for these parameters
computed first above are indeed maximal as desired.

We see that the conservation laws uniquely determine the dynamical model
that yields t,, classically, giving us another derivation of tg. to good approximation.
It will be demonstrated below that the agreement of t,. and ty. is no coincidence, but
results from valid physical relationships.

Let the numerical factor involving the ratio of I" functions in eq. (5) be desig-
nated f, = 1.72. Note that for the ratio

tHe_El 4c 1/3"’116
tve - 4f_g 62h2 -

m. cancels out, so this form of VAP lifetime derivation works for all of the massive lep-
ton pairs (electron-positron, muon-anti-muon and tau-anti-tau leptons), irrespective of
their masses (as it must to be valid). The muon and tau lepton, of course, have smaller
values of R, and t, because of their larger masses, and t,, = ty,, tyr = tg, to the

same relative precision. (See Table I.)
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Since we know the value of tg. from QFT, we may equate it with the result in
Eq. (5) to derive approximations for two familiar fundamental physical constants, the
electric charge quantum e and the fine structure constant a = €?/(%c), in terms of % and

c only — a very interesting result. If we approximately equate tge = tye, then we find

easily that

5 1/2
e R (16 ;3) ~ 6.2 x 1071 esu.

This is only 30% high, compared with the usual measured value, 4.8 x 10710 esu. It is
closer to the “bare” charge — what it would be if it were not “dressed” by the screening
of vacuum fluctuations [24, 25]. In fact, we should have expected that this calculation
was likely to yield a result larger than the usual observable charge e because Rpar < A,
the characteristic scale of the screening cloud of VEPPs which surrounds any free elec-
tron or positron. Different calculating methods lead to different estimates for the mag-
nitude of the bare charge: ref. [24] gives a calculation suggesting that eZ, ., = 1.08¢?,
but ref. [25] presents an argument based on the photon propagator, showing that the
QED perturbation theory fails and €34 could be infinite. If the semi-classical model

in the present paper had led to a value for e less than the observable 4.8 x 10710 esu,
then the model would appear unphysical; however it is hard to determine whether the
semi-classical approximation should be expected to hold to such precision. The value for
e derived from this model is consistent with egqre from QED, given present theoretical
uncertainties. (And if our expression for e gives the bare charge, then the 16% difference
from the usual value is not an approximation error.)

We can also easily derive a ~ 1/(16f3) ~ 1/83; this is 66% larger than the well-
known 1/137 value for a. As pointed out in the preceding paragraph, our model derives
the bare value of a, not the usual observed value for distances large relative to A, from a
free electron.

These results show that this semi-classical model gives remarkable agreement

with the QFT parameters of VEPPs, in view of the model’s simplicity (only point mag-
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netic dipole particles interacting via a potential function in one dimension). But the
reader may wonder whether this is coincidental. And what about the quantization that
is necessary to make it really “semi-classical” rather than entirely classical? Next the
quantization will be addressed, and an independent physical derivation of the VEPP
quantization will be presented.

The Bohr model was quantized using conditions on the angular momentum of
the orbiting electrons in a non-relativistic case [26]. In the present model, however, the
orbits have vanishing angular momentum and angular momentum conservation has al-
ready been imposed to determine the orientations of the p.- and pr.+. Hence the Bohr
approach is not exactly applicable in this VEPP model.

Let us consider the quantization of the electromagnetic field in the VEPP. The
well-known zero-point field energy of the electromagnetic field is €¢m = -;—hw. That is, for
any wave mode of angular frequency w, there is a vacuum fluctuation energy €em. An-
other way to view this fact is that there is a quantization of any zero-point fluctuation
mode w such that its energy is proportional to the action -;-Tz (Quantization of action
is a fundamental connection from classical mechanics to quantum mechanics, and was
actually used to derive the Schrodinger equation from the principle of least action by
Feynman [27].) Since the VEPP induces an electromagnetic vacuum fluctuation, let us
calculate the action associated with the electromagnetic field in the VEPP over its cycle
from creation to annihilation.

The expression for the action associated with a potential U acting on a particle
is given (for the relativistic case) by Lanczos [28]

t2
A:—/ v
t C

1

where ds = c dt/v. It follows that the action integral of the VEPP electromagnetic field

is (recall the time symmetry relative to the turning point at t,./2):

tuc/2 2 tue/2 t Rmdz’/2
A=“2/ (— 2;%3)@:4“3/ 4dz=4u§/ i
0 cy’R 8l 0 YR 0 c ytR3\/1 - (3/?




VIRTUAL ANTIPARTICLE PAIRS 15 DAvID BATCHELOR APR. 12, 2001

442 Rumas dq 242 dg

1 1
T cR,, 2 /o NOVI_ G ¢ Ry, /o ¢—3¢3y/1 = (32

_ 2m.c 7% ! d¢
- R?naz mecz 0 1-— C3/2

This final result is approximately 4.4 x 10722 erg s, only 16% less than ;h.

242 1/3
= 2mec2 RTZGI fs= 2mec2tve = 2(64 - ) fs- (6)

This action integral for our model VEPP potential equals the conventional
zero-point field action, to good approximation. Thus the model is inherently quantized
(to within the 16% difference in t,.), and is a physically valid semi-classical candidate to
represent VEPPs in the way the Bohr atom approximately models the hydrogen atom.
N.B: if t,. exactly equalled ., then A would exactly equal %h And we showed above
that regarding the e in our expressions as epare Would imply tye = tHe.

The value of A implies that there is not just a fortuitous coincidence between
the ty. and t,. timescales. Rather, the VEPP model matches the expected action in-
tegral for a vacuum fluctuation, and this is undoubtedly because it reflects the physical
process in a valid way. This agrees with standard QED, in which vacuum fluctuations
of the positron-electron field generated by the electromagnetic field are the virtual cre-
ation and annihilation of VEPPs, and the fluctuations of the electromagnetic field gen-
erated by the VEPPs are the virtual emission and absorption of photons, as Schwinger
explained [29].

In the following sections it will be seen that when the same semi-classical
method of modeling is applied to quark-antiquark virtual pairs, the same agreement in

the quantum mechanical and semi-classical timescales results, as well as the action inte-

gral.

3. Virtual Quark Antiparticle Pairs

The method of Sec. 2 can be applied to quark-antiquark virtual pairs. A pro-

cess analogous to Fig. 1(a) exists in Quantum Chromodynamics (QCD), but with a
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gluon replacing the timelike photon [30]. The energy equation is of the same form,
gg=27myc+UR)=0, (2")

except that the dominant force is the “color” force instead of the spin-spin electromag-
netic attraction. The potential function U(R) has been inferred from decades of high-
energy scattering experiments. Mesons like the J/i particle are bound states of a quark
and its anti-quark, and high-energy particle collision experiments have established phe-
nomenological forms of U(R). These experiments have revealed that a useful empirical

form of the potential is the so-called “Cornell funnel potential” [31]
V(R) = —= +aR
— 7 aR ,

where £ =~ %a,, and the QCD strong coupling strength ay; ~ 0.2 in “natural units”
(units such that # = ¢ = 1), and a =~ 0.25 GeV?. Converted to cgs units used herein,
k ~ 8.6x107!8 erg cm. The second term, aR, is only significant for R > 10713 cm, so we
will not need to consider it, since the first term with the Coulomb-like dependence will
strongly dominate the potential for the range of Rma: of quark VAPs. The Coulomb-like
term is due to exchange of a vector gluon between the quark and antiquark [32].

The QCD coupling coefficient a, is not constant, but is a “running coupling”
because of its variation with 4-momentum transfer q of the interacting particles [33].
This can be allowed for in our semi-classical model. However, it is important to be
clear about what this two-body model can be expected reasonably to correspond with in
QCD. The QCD coupling strength a,(q) has been calculated to four-loop order [34], in-
cluding a series of processes (diagrams) with numerous topologies. But the present semi-
classical model only consists of the spacetime structure of a single-loop process. Hence
it is not applicable to processes in which more than one loop is involved. It makes sense

to compare the two-body model here only with lowest-order QCD (and corrections with

the same spacetime diagram, such as spin-spin or electrostatic corrections). By the same
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token, in QFT a quark VAP doesn’t include those multiple-loop processes, so QFT logic
prohibits using multiple-loop processes to compute ¢z, for quarks also.

First, to demonstrate the basic physical model, let us take a, = 0.20, some-
times called the “canonical” value [31], derived from a fit of the charmonium system.
Let us calculate the dynamical timescale for a charm quark-antiquark VAP using this
single value of a,. After that, we will then generalize the model to account for the run-
ning of a, as a function of g.

Here is the semi-classical dynamical timescale calculation: including a Lorentz
factor 4 appropriate for the 1/R function (because the motion is relativistic for part of

the trajectory [18]), the potential in Eq. (2') becomes

U(R) = —;’fﬁ :

As in Sec. 2, we can solve (2') for Ry, at the turning point:

K

Rma:r

2m, 2 = —U(Rmaz) =

Rimaz = —— . (4")

2mg c?
For the charm quark constituent mass of 1.5 GeV/c? = 2.7 x 107%** g, we find the charm
quark VAP has an Rpa; = 1.8 x 10717 cm. This means that the quarks are deep in the
color-Coulomb part of the potential, and the linear part of the function is insignificant in
magnitude. The dynamics are determined by the single vector gluon exchange, not the
multi-gluon exchange of confinement in the linear region, in agreement with QCD [32].
For the dynamical timescale, we rewrite the energy equation (2') as y2 = (™!,

with ( = R/Rpaz, and find

e =2 [ U 7y .
o 0 ev1l—=¢ ¢ Jo v1I-¢

_ Rma.t ﬁr(]‘) — Rmaz —_ .fc’c !
T ¢ F(%) o fe= 2mgcd (5)
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where we label the ¢ integral’s value as f. & 2.0. For the charm quark, with m, & 2.3 x
10724 g, we t,g ~ 1.4 x 10725 s.

For comparison, the Heisenberg lifetime of the charm quark is tg, = 1.3 X 10725

s, only about 8% lower.

Considering the quantization of the color force potential field in a virtual charm

quark anti-quark pair, we compute the action

t"/z Rmuz/2
A=_2/" (__f_)iﬁzgﬁ -
0 YR/ v c Jo v2R1 ¢

K

N R n/‘ d¢
oo (UVI=C o VI

2
fore -;'i ~ 5.7 x 10" 2Perg s ~ 0.55 x h (6')

o | x

This action integral is a good approximation to the zero-point fluctuation action, %h,
and means that this version of the model, too, is inherently quantized just as the elec-
tromagnetic case was in Sec. 2. N.B: if t,, exactly equalled ¢g,, then A would exactly
equal 3.

The above results illustrate the basic application of the model to a quark VAP
for which a, was determined from experiments with real (non-virtual) bound states of
that quark. But to make the model realistic for quarks in general, the running coupling
a,(q) must be included in the model, not just one universal value of a,. We can develop

the model to account for the running coupling if we can include a characteristic ¢ for the

VAP of each quark flavor.

The QCD running coupling is a function of momentum transfer Q? = —g¢°.

A standard way to incorporate asymptotic freedom is to let a, depend on the quark

masses and use —q%> = (m; + my)?, with the m; the quark masses [32]. Then we may

use Richardson’s expression [35]

127 1
()~ 3 o (=2 /A7) (7)
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where n is the number of quark flavors with masses much less than m; + m2 and A is
the QCD scale energy, approximately 0.22 GeV.

We now can use m; = my = m, in the expression for a, and compute x more
realistically for a running coupling. The value of ns varies such that there are ny quarks
with masses much less than 2m,; for this paper ns will be the number of quarks with
masses of 2m,/10 or less. This criterion seems consistent with the fact that we are using
an effective field theory obtained by integrating out all quarks heavier than the typical
energy under consideration [36]. The results for this running color-Coulomb force model,

with a,(q) given by Eq. (7), appear in Table I (marked with the symbol (©) to indicate
“Color Only™).

We see that the semi-classical lifetimes t,, of the quark VAPs all agree with the
Heisenberg lifetimes ¢y, from QFT to within a factor of about 2.2, and much better for
the strange, charm and bottom quarks. While this isn’t agreement as good as for the
lepton VAPs in Sec. 2, the semi-classical model is still in rough agreement with QCD, to
much better than an order of magnitude. The color-Coulomb potential from QCD, when
taken as a classical force strength, leads to dynamical timescales of VAPs that corre-
spond surprisingly well with the QFT lifetimes for the VAPs. In addition, the values of
R,nar are consistent with VAP size scales that are deep within the color-Coulomb part of
the potential function (not out in the linear region). This needn’t be a total surprise in
view of Brau’s [5] recent success modeling mesons semi-classically, but the present work

is the first semi-classical treatment of quark VAPs.

The modeling of quark VAP lifetimes can be taken as a qualified success, but
it is possible to go further with this model and include the effects of spin-spin inter-
actions between the quark-antiquark pairs. As noted by Lichtenberg [37], the spin-
spin interaction between quarks is the source of electromagnetic mass splittings among
hadron isospin multiplets. In the present semi-classical model, because the quark VAPs

have sufficiently small R,,,, values, the spin-spin energy is comparable with the color-
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Coulomb potential for the heavier quarks in which asymptotic freedom reduces a o(q)-

Let us include the spin-spin potential in the quark VAP energy Eq. (2') and examine

the effect on ¢,,:
K 2ul

T RO

where

ng h

He = 2mgc 2

is the magnetic moment of a quark with charge Q,. The energy equation becomes

2 2
g =2ymyct — —= — 2L =0, 2")

YR (YR
Again we can derive the turning point separation Ry, by letting v — 1. This is easily
done by defining ¢ in terms of the scale length from the previous case which considered

only the color-Coulomb force:

R
¢ WTEme)

With this substitution, the energy equation with v = 1 becomes

2
S —(:. . —-A=0 with A:z—(Q—qa"l‘i)—. (4")

mazx maz
K

The parameter A is a measure of the importance of the spin-spin potential relative to

the color-Coulomb potential; A — 0 recovers the previous case of color-Coulomb poten-
tial dynamics only. There is only one real root of the cubic equation, and it is solved for
Cmaz(A) > 1 where A is found from x = ‘-;-a,. The values of a, are tabulated in Table I.

To obtain the VAP dynamical lifetime in the case that both color-Coulomb and

spin-spin potentials are significant, the general energy equation is
e -7 *-A=0,

which is a simple quadratic in 4? with solutions

, 1 4A 1
=—(1+4/1+— | = .
(v REX R -
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Only the positive root is physically significant. This leads to

-1
1—52=2§(1i 1+4—é§)

2 _ldr

v
B= 11" T e cdt

1+,/1+ %
1
PR N
c —
\ﬁ 1+;71+%‘—

The only difference in the limits of integration from the color-Coulomb-only case is that

the upper limit becomes (mqs > 1 instead of just 1. The dynamical timescale then be-

comes

t _ K /Cmaz dC
vg 2ch3 o \/1_‘\%: .
1+4/1+4+ 3

This expression reduces to the previous one (Eq. (5')) when A = 0.

For each of the six quarks, one computes A(a,), the value of the dimensionless
turning point separation of the quarks {ma. from the root of Eq. (4"), and then 2, is
given by the above expression with (maz as the upper limit of integration. The integral
is simple to perform numerically (a short C program for this is available from the author
upon request). The results are tabulated in Table I.

It can be seen that the spin-spin interaction has insignificant effect for the light
down, up and strange quarks. Because of asymptotic freedom the QCD coupling weak-
ens for the heavier quarks, however, and the spin-spin correction comes into play, in-
creasing Rma; over what it would be in the case of the color-Coulomb potential alone.
The top quark VAP, with A = 4.7, is dominated by the spin-spin potential rather than

color-Coulomb. The net effect of including both potentials is to improve the agreement
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of tyq with tp, significantly for the heavy quarks. The model lifetimes t,4 for charm,
bottom, and top quark VAPs only differ from the Heisenberg values by 8%, 17%, and
20%, respectively. Including spin-spin attraction has insignificant effect on the model
lifetimes for the down, up, and strange quarks, which differ by factors of 2.20, 2.20, and
1.52 respectively from the Heisenberg values.

The semi-classical model is successful at predicting ¢y, within 20% or better
for the heavy quarks, so it is obviously possible to reverse the derivation, start from
tyg & tig and derive ay(q) in the one-loop approximation of Eq. (7) for |g| = 2mgc in
the cases of the charm, bottom, and top quarks (that is, |g| = 2.6, 9.4 and 352 GeV/c).
This prediction of a,(352 GeV/c) is an interesting one from semi-classical theory, in
an energy domain not yet reached by particle accelerators. Although values of a, that

would be derived at the light quark masses would be much rougher, they are still much

better than order of magnitude.

4. Virtual Weak Bosons

The third class of elementary particles to which we can apply this model are
the weak interaction gauge bosons W and Z°. These particles are believed to be non-
composite and point-like. It would be interesting if we could use the virtual weak boson-
antiboson pairs to probe the weak interaction, but our model requires that we use as
the potential the strongest force to which the particles respond; in this case, the weak
bosons interact by the electromagnetic spin-spin force as well as the weak force (which
is of order 10%° times weaker than the electrostatic attraction of the antiparticles in low-
energy interactions [38]). Consequently the potential that we will use is the spin-spin
interaction between two massive bosons via their spin magnetic moments.

ge
e h !
pw =g ok, (3"

where the factor ¢ & 1 can be assumed for bosons.
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The form of Eq. (3') for the magnetic moment is therefore the same as Eq. (3),
except for the substitution of the W or Z mass for a lepton’s mass, and so the subse-
quent mathematics is the same as in Sec. 2. We find that the dynamical timescale ¢,
is again 16% less than tyw. The computation of the action is also 16% less than -,i,—h
Therefore, the third type of elementary point-like massive particle also can be described
approximately by this semi-classical model. However, in this case a separate weak inter-
action force constant cannot be derived, even though we know ¢, = tgw. In this case,
though, Ryner < 107! cm, the electroweak unification scale [39]. The result here is then

consistent with the Standard Model, given electroweak unification.

5. Composite Particles and the Breakdown of the Model

The models above were built around the dynamics of only two point-like bodies
interacting through a simple potential. Consequently the models should not be expected
to represent well the dynamics of composite particles like mesons and other hadrons. For
instance, virtual pairs of anti-mesons comprise four quarks in toto, and this is no longer
a two-body problem. Moreover, nucleons exhibit highly complex internal dynamics due
to their comprising numerous valence quarks and virtual strange quarks [40]. If the two-
body models that have been considered above do not describe such multi-body VAPs,
then that is no failing of the models in this paper.

As a test example, let us consider the neutron-anti-neutron virtual pair. A neu-
tron is an electrically neutral particle, but has a magnetic moment, so it is consistent
with our previous work to model it using the method of Sec. 2. and the spin-spin po-
tential. Its magnetic moment is not that of an elementary fermion, because the neu-
tron is a bound system of three quarks. The neutron’s magnetic moment is approxi-
mately —1.91 uy, where uy = eh/(2m, c) is the nuclear magneton (= 5.06 x 10724
cgs units). If we substitute the neutron’s magnetic moment and mass into Eq. (4), we
obtain Rn.; = 4 x 10713 c¢m, and Eq. (5) gives tyn, ~ 2.3 x 1072 s. This is approxi-

mately 35% greater than ty, =~ 1.7 x 1072° s, significantly worse than for most of the
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non-composite particles considered heretofore. The model is clearly better at character-
izing leptons than composite particles, which experience additional forces and contain
particles that the model doesn’t represent (and this is a system consisting of six valence
bodies and numerous virtual bodies).

Another composite particle example is the proton, with magnetic moment ~
2.79 un. Using Eq. (4) again, we find Rpmaz = 5.1 X 107!% cm and Eq. (5) gives t,p, &~
2.9 x 1025 5. This is 66% larger than ty, ~ 1.78 x 1072® s. The model’s prediction is
even worse than for the neutron. Perhaps the neutron’s well-known anomalously small
charge radius [41], which is approximately 0.09 x 10~13 c¢m, much less than the proton’s,
is a reason for its better agreement with the two-body model. However, the neutron’s
charge radius is still more than twice its R4, above, so it is puzzling that the model

agrees so well with ¢y, for a nucleon that is not pointlike at the scale Rpyqas.

6. Discussion

Let us summarize the results.

(1) The dynamical timescale ¢, predicted from VAP motions due to the electro-
magnetic spin-spin force approximately equals the Heisenberg lifetime of the
VAP, ty, within 16%, for the massive leptons.

(2) The action integral of the electromagnetic spin-spin potential over the dynami-
cal timescale approximately equals the zero-point field action, % /2, within 16%,
for the massive leptons.

(3) The dynamical timescale t, predicted from VAP motions due to the quark-
antiquark color-Coulomb force approximately equals the Heisenberg lifetime
of the VAP tg, within 20% or better for the heavy quarks (charm, bottom and
top), and within a factor of about 2 or better for the light quarks (down, up
and strange).

(4) The action integral of the quark-antiquark color potential over the dynamical

timescale approximately equals the zero-point field action k/2, within 8%, for



VIRTUAL ANTIPARTICLE PAIRS 25 DAvVID BATCHELOR APR. 12, 2001

(3)

(6)

the charm quark.

The dynamical timescale ¢, predicted from VAP motions due to the electro-
magnetic spin-spin force approximately equals the Heisenberg lifetime of the
VAP ty, within 16%, for the weak bosons.

The action integral of the electromagnetic spin-spin potential over the dynami-
cal timescale approximately equals the zero-point field action A/2, within 16%,

for the weak bosons.

Several points should be noted about the above results:

(2) does not follow trivially from (1) - i.e., the close agreement between A and
% /2 has a different mathematical origin than the agreement of ¢, with t5.

(4) does not follow trivially from (3), similarly.

(3) and (4) are independent of (1) and (2) because the color force potential is
completely different in form from the spin-spin potential.

(5) and (6) do not follow trivially from (1) and (2), because bosons and
fermions have different spins which only lead to similar expressions for their

magnetic moments incidentally.

There appears to be no way that these ¢y and ¢, values could all be so nearly

equal by coincidence alone, much less for the field quantization conditions to magically

come out satisfied by chance. The approximate equality of ¢tz and ¢, for so many parti-

cle types suggests that in a fully quantum mechanical or better semi-classical theory, the

two would indeed be identical. If tz; = h/(4dmc?) = t, exactly, then the VAP potential

field action A = Lk exactly (compare the definition of ¢ty and egs. (6) and (6)). These

near-equalities can hardly be coincidences, but rather they mean that the model repre-

sents well the dynamics of wave packets in VAPs, just as the Bohr model represents well

the dynamics of electronic wave packets in hydrogen atoms.

The good agreement between £y and t, also shows that the semi-classical
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model approximates the quantum mechanical process well, and suggests that it does so
in a physically valid way. This outcome is remarkable, and at odds with prevailing be-
liefs that classical dynamics are no use in the quantum domain (e.g. Heisenberg [42],

“ . for even the simplest quantum-theoretical problems the validity of classical mechan-
ics just cannot be maintained.”). This work supports the view that semi-classical com-
putations retain useful powers to add physical insight in quantum-mechanical problems,
as in the recent success in meson spectroscopy modeling, noted before [5]. Of course
quantum mechanics and QFT cannot be equalled by semi-classical methods, but all of

these methods have distinguished roles in the understanding of physical problems.

It is quite intriguing that the quantum fluctuation action -;—h emerges naturally
from these model calculations, because source-free considerations of the equations for
the electromagnetic field are generally used to obtain the zero-point energy in each wave
mode, ;f;fzw; in contrast, in the present derivations, the particles are the zero-point field

sources, as Schwinger showed in QED [29].

These dynamical calculations might be improved by using a dynamical model
that includes the effect of field retardation. If the particles are separating at a substan-
tial fraction of c, then the apparent source position of each particle (which determines its
field strength as detected by the other particle) will be altered by the finite propagation
time of fields. The calculations above have assumed instantaneous action at a distance.
While v is a decreasing function of time, retardation delays cause the particles to expe-
rience the potential at earlier times, U (t - %), when they were moving faster and the
relativistic suppression of attraction was stronger. This is the reason that the particles
don’t actually have an infinite attractive force to escape, because at the instant of emis-
sion from r = Rini:/2, they are moving at v, sufficiently near ¢ such that they only de-
tect the retarded, Lorentz-attenuated attractive force from their antiparticles. (We have

been able to let R;,;; be 0 in our computations, but it apparently must be greater than

the Planck length.)



VIRTUAL ANTIPARTICLE PAIRS 27 DaviD BATCHELOR APR. 12, 2001

Another possible improvement is to reconstruct the models along the more
elaborate lines of Oliver’s detailed self-force treatment for the electron [43]. However,
that would lead to mathematical developments beyond the scope of the present paper.

Another important approach to improvement would be to use the two-body
Dirac equation to investigate the physical properties of VAPs.

Better calculations could be performed, taking some of these effects into ac-
count, but this simple calculation method of the dynamical timescale ¢, clearly is quite
successful at corresponding with the Heisenberg lifetimes of all of the massive, non-
composite elementary particles. The models are inherently quantized for both the spin-
spin potential field case of leptons and weak bosons, and for the color force potential
field which is completely different in form. This semi-classical method deserves to be
part of the toolkit for understanding of quantum theory of virtual particles.

Because the force constants e and x can be expressed in terms of A and c, the
question arises: why do the electromagnetic and color forces have the strengths that they
in fact have? Are other strengths conceivable for these forces in some hypothetical al-
ternative universes, as has been suggested by proponents of the “anthropic principle?”
[44]

It is risky to generalize from only two instances, but these semi-classical VAP
models for electromagnetic and color force interactions have a clear common governing
principle: the Heisenberg VAP lifetime must equal the dynamical VAP timescale. (The
gravitational force is not amenable to such a model because the VAP models have the
symmetry property that antiparticles attract but like particles repel; gravitation is differ-
ent in that like particles attract as well as antiparticles.) We may derive both the elec-
tromagnetic and color force constants by means of the following program.

We know that any massive particles subject to a force will also appear in vir-
tual antiparticle pairs as vacuum fluctuations. Consequently, whatever such a particle’s

mass m, it will occur in VAPs with Heisenberg lifetime ¢y = h/(4m c?). But this life-



VIRTUAL ANTIPARTICLE PAIRS 28 DAvID BATCHELOR APR. 12, 2001

time may be expressed also as the dynamical timescale for a VAP, t,(a,) = tg where
a, is a force constant such as e or , to be determined. We have seen in Secs. 2 and 3
two examples of the principle that for any potential U(R™) there is a unique ty(an) — the
particular cases n = —1 (color force) and n = —3 (electromagnetic spin-spin attrac-
tion). The value of n for each fundamental force must be established by physical prin-
ciples such as Maxwell’s equations in the case of electromagnetism, and a more complex
derivation of form of the color potential from one-gluon exchange in QCD [45]. Solving
the resulting equation ty = t, in both cases leads to good, unique approximations for
both e and x. This suggests that ¢ and « have their values because of this consequential
link; no other values follow mathematically from the specification that U = const. x R~}
or U = const. x R™3.

The common governing principle of each of these two forces is, then, the re-
quirement that they each must be just so strong that quantum fluctuations of their re-
spective fields have dynamical lifetimes ¢,(ay) corresponding to ty. In other terms, the
product of % and c is the more fundamental quantity in nature, in that this product con-
strains both the electromagnetic and color forces to take on the strengths that they in
fact take.

Finally, let us note that in the usual relativistic QFT calculations, the contribu-
tion of VEPPs to the vacuum energy diverges to infinity [46], but the calculations can be
performed in spite of this divergence because the formalism treats the virtual pair proba-
bility amplitude contribution as only an overall phase shift in scattering and annihilation
amplitudes, which is unobservable [6]. Eq. (2) would eliminate the divergent vacuum ex-
pectation values of VAP energy densities, a long-standing inconsistency between QFT

and general relativity [47].
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FIGURE CAPTIONS

Figure 1. (a) Feynman diagram for VEPP life cycle. (Time advances in the upward di-
rection in this figure [7].) The bottom vertex is spacetime point z;, the top vertex is
spacetime point z2. The maximum extent of this process along the time axis is tge.
(b) Semi-classical VEPP life cycle model. The magnetic moments g.+ are assumed

to point along the axis of separation. The time ¢, corresponds to %tve in the case of a

VEPP.

Figure 2. Magnetic field lines of a positron at the origin. The field is symmetric with
respect to rotation about the vertical axis. An example location of a virtual electron is
indicated by the vertical arrow, representing its magnetic moment p.-, which must al-
ways be parallel with the magnetic moment of the positron because angular momentum
is conserved. The dashed lines, which become a pair of cones when rotated about the
vertical axis, define the volume where energy conservation permits virtual electrons to

exist: within the cones electrons may move, but outside the cones this violates the en-

ergy equation (2).












